A poisson regression approach for modelling spatial autocorrelation between geographically referenced observations
نویسندگان
چکیده
BACKGROUND Analytic methods commonly used in epidemiology do not account for spatial correlation between observations. In regression analyses, omission of that autocorrelation can bias parameter estimates and yield incorrect standard error estimates. METHODS We used age standardised incidence ratios (SIRs) of esophageal cancer (EC) from the Babol cancer registry from 2001 to 2005, and extracted socioeconomic indices from the Statistical Centre of Iran. The following models for SIR were used: (1) Poisson regression with agglomeration-specific nonspatial random effects; (2) Poisson regression with agglomeration-specific spatial random effects. Distance-based and neighbourhood-based autocorrelation structures were used for defining the spatial random effects and a pseudolikelihood approach was applied to estimate model parameters. The Bayesian information criterion (BIC), Akaike's information criterion (AIC) and adjusted pseudo R2, were used for model comparison. RESULTS A Gaussian semivariogram with an effective range of 225 km best fit spatial autocorrelation in agglomeration-level EC incidence. The Moran's I index was greater than its expected value indicating systematic geographical clustering of EC. The distance-based and neighbourhood-based Poisson regression estimates were generally similar. When residual spatial dependence was modelled, point and interval estimates of covariate effects were different to those obtained from the nonspatial Poisson model. CONCLUSIONS The spatial pattern evident in the EC SIR and the observation that point estimates and standard errors differed depending on the modelling approach indicate the importance of accounting for residual spatial correlation in analyses of EC incidence in the Caspian region of Iran. Our results also illustrate that spatial smoothing must be applied with care.
منابع مشابه
Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملDisease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach
This paper applies the generalised linear model for modelling geographical variation to esophageal cancer incidence data in the Caspian region of Iran. The data have a complex and hierarchical structure that makes them suitable for hierarchical analysis using Bayesian techniques, but with care required to deal with problems arising from counts of events observed in small geographical areas when...
متن کاملApplication of Geographically Weighted Regression to Investigate the Impact of Scale on Prediction Uncertainty by Modelling Relationship between Vegetation and Climate
Scale-dependence of spatial relationship between vegetation and rainfall in Central Sulawesi has been modelled using Normalized Difference Vegetation Index (NDVI) and rainfall data from weather stations. The modelling based on application of two statistical approaches: conventional ordinary least squares (OLS) regression, and geographically weighted regression (GWR). The analysis scales ranged ...
متن کاملDetermining Effective Factors on Land Surface Temperature of Tehran Using LANDSAT Images And Integrating Geographically Weighted Regression With Genetic Algorithm
Due to urbanization and changes in the urban thermal environment and since the land surface temperature (LST) in urban areas are a few degrees higher than in surrounding non-urbanized areas, identifying spatial factors affecting on LST in urban areas is very important. Hence, by identifying these factors, preventing this phenomenon become possible using general education, inserting rules and al...
متن کاملIncreasing Accuracy in Analysis Ndvi-precipitation Relationship through Scaling down from Regional to Local Model
Spatial relationship between vegetation and rainfall in Central Kazakhstan has been modelled using Normalized Difference Vegetation Index (NDVI) and rainfall data from weather stations. The modelling based on application of two statistical approaches: conventional ordinary least squares (OLS) regression, and geographically weighted regression (GWR). The results support the assumption that the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2011